EES12 - Applied Biomedical Signal Processing

Midterm Exam (“mock” exam which does NOT count for evaluation)

Remarks

e There are 4 exercises and 12 questions. The 4 exercises and 12 questions are worth 5/16
(approx. 0.3125) points each, hence a total of 5 points. There is an additional point for
presence. ! This information is for your own auto-evaluation !

o The 4 exercises relate to the Lectures (Module 02 to Module 06).
e The 12 questions relate to the Modules 02 to 07 and corresponding Laboratories.
e All questions/problems are on the 3 pages.

e Focus on the essential ideas (like 5-10 lines for each question), but do not limit your answer
to a couple of keywords.

o Ifyou get stuck on one question, do not spend too much time on it.
Exercises

1. Let a filter be defined by the difference equation between the input x and the output y:
y(n) =x(n) + 2 x(n-1) + x(n-2)

1.1 Demonstrate without any computation that this filter is a linear phase one.

The filter’s coefficient has an axial symmetry axis ([1, 2, 1] and thus the filter is linear

phase (see Module 02- Basics I, Slide 35)

1.2 What is the phase response of this filter?

(Module 02 - Basics I, Slide 32)



1.3 If x is a white noise with variance 1, what is the autocorrelation function of y?

(see Module 03 - Basics II, Slides 14 & 29)

2. A signal x with sampling frequency f; is generated using the following AR model:
x(n) =-0.9 x(n-1) + &n)
with & being white noise with variance o,.

2.1. Write the expression for the power spectral density of x in terms of these parameters.

From the expression we can see this is an AR(p = 1) model (refers to Module 05 -
Linear models I, slide 11), with a; = 0.9. The general expression for the power spectral
density (see Module 06 - Linear models II, slide 4) is:
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2.2. Is the power spectral density higher in the low-frequency or high-frequency range?

We wish to understand how P, behaves when varying between 0 (the lowest
frequency of interest) and f;/2 (the highest). We present two valid (and partially
related) approaches to look at the problem:

- 1stapproach -

The denominator of the expression obtained in 2.1. can be developed as follows
(including a replacement of]é by w, just to simplify):
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= 1.81 + 1.8 cos(2mtw)
We can see that this term varies because of the cosine: it is highest at w = 0, and
then decreases monotonically to 1.81 at w = % . Since this term is the denominator
of the power spectral density, we can then conclude, inversely, that the PSD has its
peak at f; /2 (where the denominator is lowest).
- 2nd approach -

Another strategy would be to draw insight from digital filter theory. Considering an
extension of P, to the full complex domain:
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where z € C, we can see that that it has a “pole” at z = —0.9, i.e,, in the left half-plane
on the real axis. Thus, fora z = e’/¢, Qx will increase as w increases towards =+, i.e.,
the higher frequencies - it can be seen as the “equivalent” to a single-pole high-pass
filter. Consequently, we can conclude that P, is higher in the high-frequency range.

3. Find all the parameters of an AR model of order p = 1 for a signal x with
autocorrelation function values:

R.(0)=3 Ru(1)=1
An AR(1) model is described by two parameters: a; and o;. At such a low order
these parameters can be easily calculated by applying the Yule-Walker equations

(see general form in Module 05 - Linear models I, slide 17, and this specific case of p
= 1in slide 18):
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4. Six samples x(0), x(1), ..., x(5) of a signal are available. One wishes to estimate the
coefficients a; and a, of a linear predictor of order p = 2 on this signal.

The matrix equation to be solved in a least-squares sense, i.e. —Xa + e = ¢, with a=[a, a]"
and e the error vector, to estimate these coefficients using the covariance method is:
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Modify this equation for the case of the autocorrelation method.

A linear predictor of order 2 can be written as (see Module 05 - Linear models I,
slide 28):

() =—-ax(n—1) —a,x(n—2)
The autocorrelation method considers the existing sample as part of a signal of
infinite duration, where the unavailable samples are set to zero (see Module 05 -

Linear models |, slide 35). This yields additional equations to the model, resulting in
the following matrix equation:
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Questions

1. Describe the advantages / drawbacks of FIR and IIR filters.

FIR:

+ always stable

+ can exhibit linear phase

+ impulse response is finite (duration of transitions is independent of the input)
- more coefficients are needed to match IIR

- less sensitive to numerical approximations

IIR:

+ reduced number of coefficients

- stability is only ensured when all the poles have a radius smaller than one

- no linear phase

- impulse response is infinite (duration of transition is dependent of the input)

(see Module 02 - Basics, slide 37 + lab)



2.

a) What is a linear phase filter?

A filter with a phase that is linear which means that all the frequency components of the
filtered signal are delayed by the same amount. (see Module 02 - Basics, slide 35)

b) What are the properties of the impulse response of a linear phase filter?
The filter is a FIR filter with an axial or central symmetry in its impulse response. (see
Module 02 - Basics, slide 35)

c) What is a zero-phase filter?

A linear filter of any kind (FIR or IIR) that is firstly applied to the time-reversed signal
and secondly applied to the time-reversed output signal. As the filter is applied in both
time directions it phase is equal to zero for any frequency. Such a filter is suitable for
comparing signals during analysis, but it is not suitable for real time implementations.
(see Module 02 - Basics, slide 36)

3. Using the Welch algorithm to estimate the power spectral density:

a) What is the influence of the length of the block?

The length of the block impacts the frequency resolution that is fs/Npiock (see Module 03 -
Basics 11, slide 20)

b) What is the motivation of multiplying each block by a window before the DFT?
Without applying a window, the estimated spectrum will exhibit oscillations due to the
sharp transitions at the boundaries of the block (Gibbs phenomenon). The application of a
window before the computation of the DFT reduces these oscillations. Diverse kinds of
windows can be selected, providing a compromise between oscillations and spectral
resolution. (see Module 03 - Basics 1II, slide 16)

4. Using the measurement of mean blood pressure and cardiac inter-beat intervals:

a) What is a suitable sampling frequency to analyse the control of the autonomic nervous
system?

The maximum frequency corresponding to the autonomic nervous system control is 0.5
Hz. Therefore, the sampling frequency must be larger than twice to avoid spectral
aliasing. Practically sampling frequencies slightly higher (typ. 1.5 - 2.0 Hz) are used. (see
Module 02 — Basics II, Lab. 2)

b) What is the advantage of using the auto-correlation method to estimate the power
spectral density compared to discrete Fourier transform?

The Fourier transform is not a consistent spectral estimator and does not permit to obtain
an averaged estimation of the power spectral density. The use of the central part of the
autocorrelation function permits to increase the signal to noise ration of the spectral
estimate. (see Module 02 — Basics II, Slides 6 + 15)

5. Suppose a microphone is recording someone speaking for some time (“period A”) ;
then the person stops talking and the microphone records only silence, which we can
consider to be dominated by white noise, for some time (“period B”). An AR (p) model,



with p > 0, is fit to period A and to period B separately. In which period is the ratio
excitation variance / signal variance the highest? Why?

Assuming an adequate fit to the AR(p) model x(n) = £(n) — XF_, a(Dx(n — 1), where &
is the excitation and is assumed to be white noise, then we can expect that the ratio
excitation variance / signal variance will be highest in period B, i.e., when the
microphone is recording silence. This is because in the silent period the recording will be
dominated by white noise, which will be attributed to the excitation term of the model.
The deterministic part will have a negligible contribution, and therefore the excitation
variance will approximate the full signal variance, leading to the highest ratio. (see
Module 05 - Linear models I, slide 47, and lab Q2.2).

6. When an AR model is estimated with an order that is too low, what can we expect to
find about the estimated excitation signal €? Why?

If the order is too low, the excitation term is likely to deviate significantly from white
noise. This is because when the order assigned to the model is too low, the model will be
unable to capture the structure presents fully and appropriately in the signal, i.e., its
dependencies across time. As a result, the residual, non-modeled dependencies are
expected to “leak” to the excitation term. (This effect is indeed explored in certain
approaches for order estimation, wherein the estimated excitation signal is tested for
whiteness to evaluate if the model order is high enough to capture all the signal structure
or not — see Module 05 - Linear models 1, slide 42)

7. Regarding the estimation of the power spectral density based on AR or ARMA
models:
a) What are the potential advantages with respect to non-parametric estimation

approaches (e.g., Welsh method)?
AR and ARMA models impose certain assumptions about the signal
properties/structure, and in doing so they allow more robust estimates of the
power spectral density, and more specifically, estimates that are less sensitive to
noise in the available signal sample (see Module 06 - Linear models II, slide 5,
and lab Q1.3). This can be especially useful when the sample is either relatively
noisy or relatively short.

b) What are the risks when the model order p is too low?

If the order is too low, the signal structure will not be accurately and fully
captured in the AR parameters a;, and therefore the power spectral density
estimate (which relies on these parameters to describe the signal spectrum) will be
inaccurate. It is possible that certain meaningful spectral features (e.g., peaks) will
be absent or smoothed out. (see Module 06 - Linear models II, lab Q1.2).

8. Regarding the Pisarenko harmonic retrieval method:
a) What type of signals is this method adequate for?

This method is appropriate for signals that are linear combinations of sinusoids
with added white noise (see Module 06 - Linear models 11, slide 32).



b) What model parameter(s) can the method estimate?

The method can estimate the power and frequency of each of the sinusoids, as
well as the power of the white noise (see Module 06 - Linear models II, slide 41).

¢) What model parameter(s) can the method not estimate?

The method is unable to estimate the phases of the sinusoids (see Module 06 -
Linear models II, slide 37).

9. Which window function should you choose for your spectrogram if you wanted to
maximize your chances to differentiate between the heart rate and a motion frequency
component that is very close to it? Why?

The choice of window function is a trade-off between frequency resolution (ability to
distinguish frequencies that are close to each other) and dynamic range (ability to
distinguish frequencies of different strengths). In our case, the heart rate-related and the
motion-related frequency components are very close to each other in frequency, and
approximately of similar power. This should clearly guide the trade-off towards a good
frequency resolution to help tell them apart, and therefore choosing a window such as the
rectangular window. (see Module 04 - Time frequency, slide 13).

10. When estimating the sympathovagal balance, why would you probably have a lower
time resolution on the low frequency component if you used the wavelet transform
instead of the short-term Fourier transform?

In real signals, high frequencies often span over a shorter time than long frequencies.
This observation makes wavelets naturally more suited for time-frequency analysis as
wavelets have a time support (the equivalent of the window length) that depends on their
frequency. Thus, low frequencies will be projected onto longer wavelets, at the cost of a
low time resolution. With the STFT, the window length is the same for all frequencies.
Because of the trade-off between frequency and time resolution, the window in the STFT
will often be longer than desired in the high frequencies and shorter than desired in the
low frequencies. As a result, the time resolution at low frequencies is often better with the
STFT compared to the wavelet transform. (see Module 04 - Time frequency, slide 37).

11. One wants to estimate the instantaneous frequency (IF) of atrial fibrillation from the
surface electrocardiogram (ECGQG). Following the subtraction of the ventricular activity
(the atrial and ventricular activities overlap on the surface ECG), the remaining atrial
signals are usually bandpass filtered to remove the spectral frequency components
outside of the frequency range of atrial fibrillation.
a) From a theoretical perspective, why should the signals be bandpass filtered before
estimating the instantaneous frequency?

The underlying assumption for the estimation of instantaneous frequency is that
the signal is locally mono-component (or at least narrow-band). This is rarely the



12.

b)

b)

case in practice and thus some band-pass filtering should be performed. (see
Module 07 — Instantaneous Frequency Estimation, slide 9, and Lab Exercise 1)

What would be the benefit of bandpass filtering in terms of accuracy of IF
estimation?

The IF estimate obtained on the filtered signals would be smoother (with less
distortions) and centered on the correct frequency value, whereas the IF estimate
from the raw atrial signals would present large distortions due to the large signal
spectral variations as a function of time. (see Module 07 - Instantaneous
Frequency Estimation, slide 9, and Lab Exercise 1)

How is defined the analytic signal?

An analytic signal is a complex signal without negative frequency components. It
is defined as x,(t) = x(t) + jx,(t) , where x,(t) is the Hilbert transform of
x(t). (see Module 07 - Instantaneous Frequency Estimation, slides 14 and 15)

An oscillation signal with slowly-time varying amplitude and frequency can be
represented x(t) = A(t) cos(CD(t)). How can one define the instantaneous
amplitude and frequency through the analytical representation of x(t)?

For a cosine signal, the analytic signal is  x,(t) = A(t) cos((D(t))+

JA(L) sin(dD(t)) = A(t) exp(CD(t)). The instantaneous amplitude is defined as
|x,(t)] = A(t) ; the instantaneous frequency is defined as f(t) = %dq;g)

the instantaneous phase is 2x,(t) = ¢(t). (sece Module 07 - Instantaneous
Frequency Estimation, slides 16, 17, and 18)

, where



	EE512 - Applied Biomedical Signal Processing
	Midterm Exam (“mock” exam which does NOT count for evaluation)
	Remarks

